openedx-k8s-harmony

Harmony Project - Open edX on Kubernetes

This project is focused on making it easy to set up a standardized, scalable, secure Kubernetes environment that can host multiple instances of Open edX. See Motivation below.

Specifically, this repository contains:

This repository does not set up the Kubernetes cluster or provision individual Open edX instances.

See technology stack and architecture below for more details.

Motivation

Many Open edX providers and users have a need to deploy multiple instances of Open edX onto Kubernetes, but there is currently no standardized way to do so and each provider must build their own tooling to manage that. This project aims to provide an easy and standardized approach that incorporates industry best practices and lessons learned.

In particular, this project aims to provide the following benefits to Open edX operators:

Technology stack and architecture

  1. At the base is a Kubernetes cluster, which you must provide (e.g. using Terraform to provision Amazon EKS).
    • Any cloud provider such as AWS or Digital Ocean should work. There is an example Terraform setup in infra-example but it is just a starting point and not recommended for production use.
  2. On top of that, this project’s helm chart will install the shared resources you need - an ingress controller, monitoring, database clusters, etc. The following are included but can be disabled/replaced if you prefer an alternative:
    • Ingress controller: ingress-nginx
    • Automatic HTTPS cert provisioning: cert-manager
    • Autoscaling: metrics-server and vertical-pod-autoscaler
    • Search index: ElasticSearch (support for OpenSearch is planned)
    • Monitoring: TODO
    • Database clusters: TODO (for now we recommend provisioning managed MySQL/MongoDB database clusters from your cloud provider using Terraform or a tool like Grove.)
    • Where possible, we try to configure these systems to auto-detect newly deployed Open edX instances and adapt to them automatically; where that isn’t possible, Tutor plugins are used so that the instances self-register or self-provision the shared resources as needed.
  3. Tutor is used to build the container images that will be deployed onto the cluster.
    • This project’s Tutor plugin is required to make the images compatible with the shared resources deployed by the Helm chart.
    • The pod-autoscaling plugin is required for autoscaling.
    • You can use the tutor k8s commands directly (as documented below) or you can use a CI/CD tool like Grove to deploy instances/images.

FAQ

Is this ready to use in production?

We are tracking that in issue 26, so check that issue for the current status.

This project aims to support many small/medium instances deployed onto a cluster; is it also suitable for deploying one really high traffic instance?

Supporting one really large instance is not a core design goal, but it should work well and we may consider including this as a goal in the future. Please reach out to us or get involved with this project if you have this requirement.

This helm chart uses ingress-nginx as a load balancer alongside cert-manager to provide automatic SSL certificates. Because of how Helm works, the cert-manager sub-chart will be installed into the same namespace as the parent harmony chart. But if you already have cert-manager on your cluster, this will create a conflict. You should take special care not to install cert-manager twice due to it installing several non-namespaced resources. If you already installed cert-manager by different means, make sure set cert-manager.enabled: false for this chart.

In addition, the cert-manager Helm charts do not install the required CRDs used by cert-manager, so you will need to manually install and upgrade them to the correct version as described in the instructions below. This is due to the some limitations in the management of CRDs by Helm.

How the autoscaling capabilities are implemented in this project?

Tutor does not offer an autoscaling mechanism by default. This is a critical feature when your application starts to receive more and more traffic. Kubernetes offers two main autoscaling methods:

For the scope of this project, the focus will be in the pod-based scaling mechanisms since Node-based scaling tools require configuration which is external to the cluster, which is out of the scope for this Helm chart for now.

The approach will be to use pod autoscaling on each environment separately (assuming there are installations on different namespaces) following the steps below:

  1. Install the global dependencies: this Helm chart offers the option of installing the dependencies required to get HPA and VPA working (they are included as subcharts). These are the Helm charts for metrics-server and VPA. By default these dependencies are not installed, however you can enable them via the Helm chart values if they aren’t still present in your cluster.
  2. Enable the pod-autoscaling plugin per environment: the pod-autoscaling plugin enables the implementation of HPA and VPA to start scaling an installation workloads. Variables for the plugin configuration are documented there.




Usage Instructions

Step 1: Use Helm to provision a kubernetes cluster using this chart

For this recommended approach, you need to have a Kubernetes cluster in the cloud with at least 12GB of usable memory (that’s enough to test 2 Open edX instances).

  1. Make sure you can access the cluster from your machine: run kubectl cluster-info and make sure it displays some information about the cluster (e.g. two URLs).
  2. Copy values-example.yaml to values.yaml and edit it to put in your email address and customize other settings. The email address is required for Lets Encrypt to issue HTTPS certificates. It is not shared with anyone else.
  3. Install Helm if you don’t have it already.
  4. Install the cert-manager CRDs if using cert-manager:
    kubectl apply -f https://github.com/cert-manager/cert-manager/releases/download/v1.10.1/cert-manager.crds.yaml --namespace=harmony
    

    You can check the version of cert-manager that is going to be installed by the chart by running helm dependency list or by checking the corresponding line in the harmony-chart/Chart.yaml file.

  5. Run:
    helm install --namespace harmony --create-namespace -f values.yaml harmony ./harmony-chart
    

Note: in the future, if you make any changes to values.yaml, then run this command to update the deployment:

helm upgrade --namespace harmony -f values.yaml harmony ./harmony-chart

Option 1b: Setting up Harmony Chart locally on Minikube

Note: if possible, it’s preferred to use a cloud-hosted cluster instead (see previous section). But if you don’t have a cluster available in the cloud, you can use minikube to try this out locally. The minikube version does not support HTTPS and is more complicated due to the need to use tunnelling.

  1. First, install minikube if you don’t have it already.
  2. Run minikube start (you can also use minikube dashboard to access the Kubernetes dashboard).
  3. Run
    helm install --namespace harmony --create-namespace -f values-minikube.yaml harmony ./harmony-chart
  4. Run minikube tunnel (you may need to enter a password), and then you should be able to access the cluster (see “External IP” below). If this approach is not working, an alternative is to run
    minikube service harmony-ingress-nginx-controller -n harmony
    and then go to the URL it says, e.g. http://127.0.0.1:52806 plus /cluster-echo-test (e.g. http://127.0.0.1:52806/cluster-echo-test)
  5. In this case, skip step 2 (“Get the external IP”) and use 127.0.0.1 as the external IP. You will need to remember to include the port numbers shown above when accessing the instances.

Step 2: Get the external IP

The ingress NGINX Controller is used to automatically set up an HTTPS reverse proxy for each Open edX instance as it gets deployed onto the cluster. There is just one load balancer with a single external IP for all the instances on the cluster. To get its IP, use:

kubectl get svc -n harmony harmony-ingress-nginx-controller

To test that your load balancer is working, go to http://<the external ip>/cluster-echo-test . You may need to ignore the HTTPS warnings, but then you should see a response with some basic JSON output.

Step 3: Deploying an Open edX instance using Tutor

Important: First, get the load balancer’s IP (see “external IP” above), and set the DNS records for the instance you want to create to be pointing to the load balancer (Usually if you want the LMS at lms.example.com, you’ll need to set two A records for lms.example.com and *.lms.example.com, pointing to the external IP from the load balancer).

You also will need to have the tutor-contrib-harmony-plugin installed into Tutor:

pip install -e 'git+https://github.com/openedx/openedx-k8s-harmony.git#egg=tutor-contrib-harmony-plugin&subdirectory=tutor-contrib-harmony-plugin'

Next, create a Tutor config directory unique to this instance, and configure it:

export INSTANCE_ID=openedx-01
export TUTOR_ROOT=~/deployments/tutor-k8s/$INSTANCE_ID
tutor plugins enable k8s_harmony
tutor config save -i --set K8S_NAMESPACE=$INSTANCE_ID

Then deploy it:

tutor k8s start
tutor k8s init

Note that the init command may take quite a long time to complete. Use the commands that Tutor says (“To view the logs from this job, run:”) in a separate terminal in order to monitor the status. Also note that if you want to use the MFEs, you’ll need a custom image and it won’t work out of the box.

You can repeat step 3 many times to install multiple instances onto the cluster.




Configuration Reference

Multi-tenant Elasticsearch

Tutor creates an Elasticsearch pod as part of the Kubernetes deployment. Depending on the number of instances Memory and CPU use can be lowered by running a central ES cluster instead of an ES pod for every instance.

To enable set elasticsearch.enabled=true in your values.yaml and deploy the chart.

For each instance you would like to enable this on, set the configuration values in the respective config.yml:

K8S_HARMONY_ENABLE_SHARED_ELASTICSEARCH: true
RUN_ELASTICSEARCH: false

Caveats

In order for SSL to work without warnings the CA certificate needs to be mounted in the relevant pods. This is not yet implemented as due to an outstanding issue in tutor that had not yet been completed at the time of writing.

Extended Documentation

How to uninstall this chart

Just run helm uninstall --namespace harmony harmony to uninstall this.

How to create a cluster for testing on DigitalOcean

If you use DigitalOcean, you can use Terraform to quickly spin up a cluster, try this out, then shut it down again. Here’s how. First, put the following into infra-tests/secrets.auto.tfvars including a valid DigitalOcean access token:

cluster_name = "harmony-test"
do_token = "digital-ocean-token"

Then run:

cd infra-example
terraform init
terraform apply
cd ..
export KUBECONFIG=`pwd`/infra-example/kubeconfig

Then follow steps 1-4 above. When you’re done, run terraform destroy to clean up everything.